Răspuns :
Răspuns:
Explicație pas cu pas:
cobori din C perpendiculara C', obţii triunghiul dreptunghic CC'B, C'=90°, B=60°, C=30°,
C'B=AB-CD=36-24=12
[tex]sin C=\frac{BC'}{BC} =\frac{1}{2} (sinus de 30)[/tex], deci BC=2*BC'=2*12=24
[tex]sinB=\frac{CC'}{BC}=sin60=\frac{\sqrt{3} }{2} ,[/tex]
[tex]CC'=\frac{BC*\sqrt{3} }{2}=\frac{24\sqrt{3} }{2}=12\sqrt{3}[/tex]
CC'=AD
P=AB+BC+CD+AD=36+24+24+[tex]12\sqrt{3}= 84+12\sqrt{3} =12(7+\sqrt{3} )[/tex] cm
în triunghgiul ABD, din Pitagora, diagonala [tex]BD=\sqrt{AB^{2}+AD^{2} } =\sqrt{36^{2}+(12\sqrt{3}) ^{2} } =\sqrt{1296+432}=\sqrt{1728} =24\sqrt{3}[/tex]
în triunghiul ADC, diagonala [tex]AC=\sqrt{AD^{2}+CD^{2} } =\sqrt{432+576}=\sqrt{1008} =12\sqrt{7}[/tex]
Vă mulțumim pentru vizita pe site-ul nostru dedicat Matematică. Sperăm că informațiile prezentate v-au fost utile. Dacă aveți întrebări sau aveți nevoie de suport suplimentar, nu ezitați să ne contactați. Ne bucurăm să vă revedem și vă invităm să ne adăugați în lista de favorite!